Object Shape Estimation and Modeling Combining Visual Data and Tactile Exploration

Yasemin Bekiroglu

University College London Chalmers University of Technology

July 8, 2020

<ロ> < 四> < 四> < 回> < 三> < 三> < 三>

Shape Modeling

Shape is an important parameter for various tasks.

Assembly

Grasp planning

Pose estimation¹

Sensory data is noisy and incomplete.

¹ Simtrack: A simulation-based framework for scalable real-time object pose detection and tracking, IROS 20151 \rightarrow $\langle \overrightarrow{B} \rangle$ $\langle \overrightarrow{B} \rangle$ $\langle \overrightarrow{B} \rangle$ $\langle \overrightarrow{B} \rangle$ $\langle \overrightarrow{B} \rangle$

Shape Modeling²

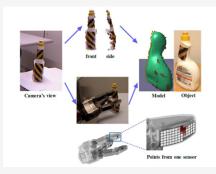
- Enhance shape perception by complementing visual data with actively acquired tactile measurements.
- Find low-dimensional representation of shape data that captures manipulation affordances.

Incomplete visual data can be complemented by touch sensing.

² Enhancing Visual Perception of Shape through Tactile Glances, IROS 2013.

Shape Modeling³

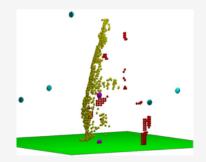
- Enhance shape perception by complementing visual data with actively acquired tactile measurements.
 - **Raw** sensory data \rightarrow point cloud \rightarrow shape



³Enhancing Visual Perception of Shape through Tactile Glances, IROS 2013.

Regression for Shape Modeling: Data and Representation

- Measurements given as pairs $(x_i, y_i), x_i \in \mathbb{R}^3, y_i \in \mathbb{R}$
 - On surface (visual and tactile data points): $y_i = 0$
 - Outside (e.g. on borders of bounding cube): $y_i = 1$
 - Inside (1 cm behind visual point cloud centroid): $y_i = -1$



Vision points in yellow and tactile points in red.

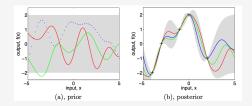
< ロ > < 得 > < 回 > < 回 >

Regression for Shape Modeling: Implicit Surfaces

- Implicit surface representation to describe shape of a given object $f(\mathbf{x}) = 0, x \in \mathbb{R}^3$
- Modeled by Gaussian Processes using a Thin Plate prior⁴: $k(\mathbf{x}, \mathbf{x}') = 2r^3 - 3Rr^2 + R^3, r = |\mathbf{x} - \mathbf{x}'|$
- Each observation subjected to Gaussian noise, $y_i = f(\mathbf{x}_i) + \epsilon_i, \epsilon_i \sim \mathcal{N}(0, \sigma_n^2)$
- A GP can be interpreted as a distribution: $f(\mathbf{x}) \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}'))$
- For test points $\mathbf{X}^* \in \mathbb{R}^{n^*,3}$, $p(\mathbf{f}^*|\mathbf{y},\mathbf{X},\mathbf{X}^*) \sim \mathcal{N}(\boldsymbol{\mu}^*,\boldsymbol{\Sigma}^*)$,

$$\mu^* = K(\mathbf{X}^*, \mathbf{X})[K(\mathbf{X}, \mathbf{X}) + \sigma_n^2 I]^{-1} \mathbf{y}$$

$$\Sigma^* = K(\mathbf{X}^*, \mathbf{X}^*) - K(\mathbf{X}^*, \mathbf{X})[K(\mathbf{X}, \mathbf{X}) + \sigma_n^2 I]^{-1} K(\mathbf{X}, \mathbf{X}^*)$$



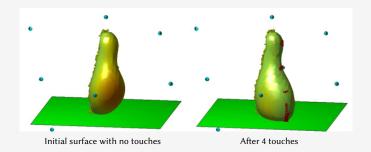
Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.

⁴R is a maximum possible value of r.

< ロ > < 得 > < 回 > < 回 > -

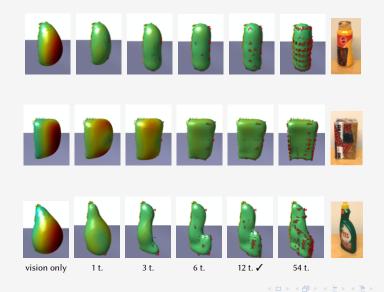
Touching actions guided by uncertainty

- Maximize information gain by touching most uncertain regions.
- Uncertainty given by variance from GP estimates.
 - Color coded surface: low uncertainty, high uncertainty



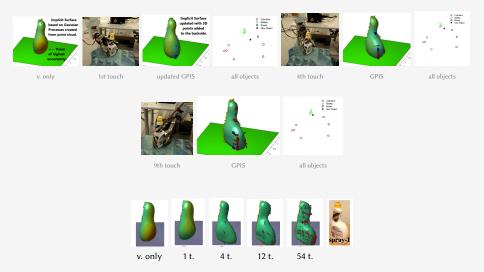
<ロ> < 四> < 四> < 回> < 三> < 三> < 三>

Convergence



æ

Experiments with a spray bottle



Enhancing Visual Perception of Shape through Tactile Glances, IROS 2013 CoTeSys Cognitive Robotics Best Paper Award Finalist

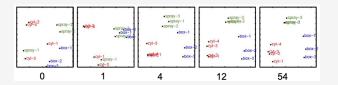
・ロン ・聞と ・ヨン ・ヨン

Shape Representation: Evaluations

- Distributions of principal curvatures from resulting surfaces.
 - Comparison by kernel based two sample test.

Similarity matrix

Spectral clustering from similarity matrix.



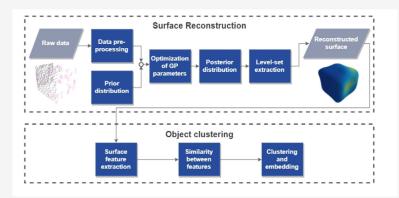
Sparse GPs

- Limitation of GPs: complexity is $\mathcal{O}(n^3)$.
- Sparse approximate method: $\mathcal{O}(n(n^u)^2)$, for $n^u \ll n$.
- n^u pairs of auxiliary input-output variables, inducing variables, $\mathbf{x}_i^u \in \mathbb{R}^3$ and $f_i^u \in \mathbb{R}$, for $i = 1, ..., n^u$.
- Variational approximation of posterior⁵

$$\begin{aligned} q(\mathbf{f}^{*}|\mathbf{X}^{*}) &\sim \mathcal{N}(\boldsymbol{\mu}^{q(\mathbf{f}^{*}|\mathbf{X}^{*})}, \boldsymbol{\Sigma}^{q(\mathbf{f}^{*}|\mathbf{X}^{*})}), \\ \boldsymbol{\mu}^{q(\mathbf{f}^{*}|\mathbf{X}^{*})} &= K(\mathbf{X}^{*}, \mathbf{X}^{u})K(\mathbf{X}^{u}, \mathbf{X}^{u})^{-1}\boldsymbol{\mu}^{q(\mathbf{f}^{u})} \\ \boldsymbol{\Sigma}^{q(\mathbf{f}^{*}|\mathbf{X}^{*})} &= K(\mathbf{X}^{*}, \mathbf{X}^{*}) - K(\mathbf{X}^{*}, \mathbf{X}^{u})K(\mathbf{X}^{u}, \mathbf{X}^{u})^{-1}K(\mathbf{X}^{u}, \mathbf{X}^{*}) + \\ K(\mathbf{X}^{*}, \mathbf{X}^{u})K(\mathbf{X}^{u}, \mathbf{X}^{u})^{-1}\boldsymbol{\Sigma}^{q(\mathbf{f}^{u})}K(\mathbf{X}^{u}, \mathbf{X}^{u})^{-1}K(\mathbf{X}^{u}, \mathbf{X}^{*}) \end{aligned}$$

⁵Variational learning of inducing variables in sparse Gaussian processes, AISTATS 2009.

System Outline



◆□→ ◆圖→ ◆国→ ◆国→ 三国

Object Shape Estimation and Modeling Combining Visual Data and Tactile Exploration

Results using Sparse GPs for Shape Modeling⁶

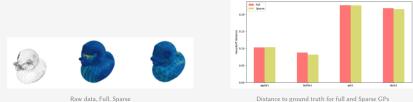
Kernel selection



Raw data, SE, MA, TP

Distance to ground truth

Full vs Approximation



Distance to ground truth for full and Sparse GPs

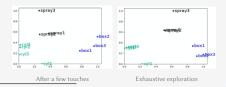
⁶Object shape estimation and modeling, based on sparse Gaussian process implicit surfaces, combining visual data and tactile exploration, Robotics and Autonomous Systems, 2020. < ロ > < 同 > < 回 > < 回 >

Object Shape Estimation and Modeling Combining Visual Data and Tactile Exploration

Results using Sparse GPs for Shape Modeling⁷

More reconstructions from synthetic and real data:

Clusters from Kuka and Schunk robot data:



7 Object shape estimation and modeling, based on sparse Gaussian process implicit surfaces, combining visual data and factile exploration, RAS, 2020. — Yasemin Bekiroglu | July 8, 2020

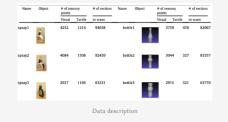
Dataset available⁸

- Visual and tactile point cloud data from two robots for shape modeling and completion.
 - 20 objects, 4 categories, ground truth scans.
 - https://data.mendeley.com/datasets/ztkctgvgw6/1

Point cloud

PR2

Tactile data



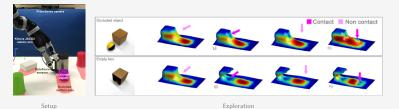
Kuka, Schunk, Kinect

Tactile data

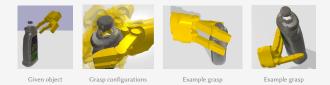
8 Visual and Tactile 3D Point Cloud Data from Real Robots for Shape Modeling and Completion, Data in Brief; 2020. + 🗇 + + 🚊 + + 🛓 - 🔊 +

Extensions

Exploring surfaces and building 3D representations of the environment.9



Grasp planning using GPIS representation



9 Active Exploration Using Gaussian Random Fields and Gaussian Process Implicit Surfaces, IROS 2016 🛛 🗧 🕨 🗧 🕞 🔸 🚊 🕨

- Probabilistic shape models based on Implicit Surfaces using Gaussian Processes.
- Incremental refinement of shape for visually observed objects through uncertainty guided touches.
 - Resulting models similar to real object shapes.
- Some future directions: improve accuracy in reconstructions, exploration strategy (bimanual); explore geometric priors, kernel choice, category level modeling.

ヘロン ヘロン ヘビン ヘビン