Learning Robotic Interaction Tasks with Stability Guarantees
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Interaction Tasks (Contact-Rich Manipulation)

Contact-free manipulation: threading a needle! Contact-rich manipulation: inserting a key?
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Interaction Tasks (Contact-Rich Manipulation)

Contact-free manipulation: threading a needle

» No exchange of forces and energy
» Purely kinematic

» Control = trajectory planning +
feedback control

Contact-rich manipulation: inserting a key

» Exchange of forces and energy
» Dynamics is complex and unknown
» Control ?

» Majority of human manipulation
tasks
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Interaction Tasks (Contact-Rich Manipulation)

Contact-free manipulation: threading a needle  Contact-rich manipulation: inserting a key

Peg-in-hole: benchmark for robots
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Reinforcement Learning (RL) of Interaction Tasks
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Reinforcement Learning (RL) of Interaction Tasks
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Reinforcement Learning (RL) of Interaction Tasks

Trials
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Policy search

Reward function : r(x, u)

T
0 = argmaxET[Z r(x,u)]
6 t=0
T
p(7) = p(x1) Hﬂo(ut|xt)P(xt+1|xt’ u;)
t=1 policy dynamics

T {x1,u1, ..., xT,UT}
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Reinforcement Learning (RL) of Interaction Tasks

Trials

Model-free RL

Policy 7777777 TTT777777777777 Data

Policy search

Reward function : r(x, u)

.
0 = argmax]E.,[Z r(x,u)]
6 t=0
-
p(T) = p(x1) H mo(ue|xe) p(Xes1|xe, ur)
t=1 policy dynamics

T {X1,u1, ..., xT,UT}
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Reinforcement Learning (RL) of Interaction Tasks

Trials

Model-based RL

Policy 7777777 T77777777777777
Model learning

Policy search
Reward function : r(x, u)
0 = argmaxE,[Z r(x,u)]
0
;0 Model (dynamics)
p(7) = p(x1) Hﬂo ue|x;) P(Xt+1|xt u;)
=1
policy dynamlcs
T {X1,u1, ..., xT,UT}
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Reinforcement Learning (RL) of Interaction Tasks

Trials
N

Model learning

Policy search
Reward function : r(x, u)
0 = argmaxIE,.[Z r(x,u)]
0
;0 Model (dynamics)
p(7) = p(x1) Hﬂ’a ue|x;) P(Xt+1|xt u;)
t=1 M
policy dynamncs
T {X1,u1, ..., xT,UT}

Model-based RL
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» Specify only reward function! No trajectory planning + feedback control,

no dynamics modeling
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Unstable Motions in RL

Hime-stability!

Why stability?

> A stability certificate is
indispensable for
real-world deployment

» It is the main means for
safety
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Lyapunov Stability

Lyapunov
candidate
function

Policy/ Certificate:
Controller Stable/Unstable

_ Lyapunov Global/local stability
Dynamics analysis Asymptotic/Nonasymptotic
model

Passive/Active

» Usually require analytic forms for policy, dynamics and
Lyapunov function

» Lyapunov analysis is usually done manually
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A Straightforward Approach for all-the-time-stability

Stability-aware model-based RL

Lyapunov
function
synthesis

\\
Lyapunov\\
function

Model

» Model-learning of contact
dynamics is hard

> How to cope with
nonanalytic forms

» How to automate Lyapunov
analysis?
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Stability of Robot-Environment Interaction
» Stability is retained when a passive manipulator interacts with a passive (unknown)
environment!.

» Passivity: can only dissipate or store energy but not create it.

> Passive manipulator = a passive map from Feg to X w.rt V, or V < FI.x.

Passive
robot

x Passive
environment

Fext
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!Colgate, J.E. and Hogan, N. (1988). Robust control of dynamically interacting systems, Int. J. Control, 48(1):65-88
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A Smarter Approach

Stability-aware model-free RL

» No model is learned; only
using manipulator model.

» Stability constraint h(¢) on
shared parameter 0

Policy
modeling

Lyapunov
candidate
function

Vo(x)
Lyapunov
analysis

Manipulator
modeling

Key enabling ideas:
» Ensure both the manipulator (controlled) and the environment to be passive.

» Lyapunov function Vj(x) and policy mg(x) share the same parameters—updating
mg(x) automatically updates Vj(x).
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Evolution Strategy (ES) based Model-Free RL3

Optimal value Stability-aware model-free RL

A
Policy
modeling
q1(0)
qo0(0) Lyapunov \ Vo (x)
Z candidate Lyapunov
an(0) function analysis
LN /@0)
Approximate ~~— _ __ L —" a2(
solution
Manipulator
modeling £ )
_

i-MOGIC? Our contribution
Cross-Entropy Method based strategy

> 9 ={S° DO Sk D* sk I} for k=1,....K, 8 ¢ RN (positive definite quantities)
» Novel sampling distribution g(6) with Wishart factors (inherent constraint h(6)

satisfaction)

2Khansari-Zadeh, S. Mohammad, Klas Kronander, and Aude Billard. " Modeling robot discrete movements with state-varying stiffness
and damping: A framework for integrated motion generation and impedance control.” Proceedings of RSS 2014.
3Stability-Guaranteed Reinforcement Learning for Contact-rich Manipulation SA Khader, H Yin, P Falco, D Kragic - arXiv preprint

arXiv:2004.10886, 2020
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Experimental Results: Peg-In-Hole

» Insertion clearance of 0.5mm

» Full operational space control
(translation and rotation)

» Learns in 300 trials

Before learning After learning
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Conclusion and Future Work

vvvyYyy

v

>

Reinforcement learning is important for interaction tasks.
All-the-time-stability is essential for real-world deployment.
Stable RL of peg-in-hole may be unprecedented.

Limitations: specialized policies (i-MOGIC) may not be flexible enough and cannot
incorporate (high dimensional multimodal) perception

Future consideration: can we achieve all-the-time-stability using neural network policies?
Submitted to IEEE Robotics and Automation Letters.
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