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Abstract. This report presents the solutions of team NTNU-ERC for
the 2020 CORSMAL Challenge. The challenge consisted in using multi-
modal data including depth, RGB, infrared, audio and IMU data to per-
form three tasks that involved containers. For the task of classification
of filling type we utilized MFCC features extracted from audio as input
a convolution-based model. In the task of estimating the volume of con-
tainers, we used image processing to determine the region that included
the container. By feeding the region together with its dimensions to a
convolution-based model we can estimate the volume of the container.
Our team got first place in the task of estimating container volume. The
full implementation is available at https://shorturl.at/CFKWZ.

1 Introduction

This technical report details the solutions of team NTNU-ERC for the 2020
CORSMAL Challenge. The challenge consisted of three tasks that involved dif-
ferent types of containers such as glasses, cups and boxes. The containers were
either filled with water, rice or pasta, or left empty. The overall goal was to es-
timate the weight of the container, including its filling. This is a necessary skill
for robots to robustly perform handover interactions with humans. Failure to
estimate the proper weight of a container could result in excessive or insufficient
grasping force, which could lead to spilling its contents or even damaging the
container.

The three tasks were:

1. Fullness classification: is the container empty, half-filled (50%) or near-full
(90%)?

2. Filling type classification: what was the container filled with: nothing, water,
rice or pasta?

3. Container capacity estimation: what is the maximum capacity, i.e. volume,
of the container?

The predictions for each task could be performed by an independent model,
and the solutions are merged to get the final prediction of the overall task. Due
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to timing constraints our team could only realize solutions for tasks 2 and 3, that
is, classification of filling type and estimation of container capacity, respectively.
The rest of this document details our methodology and results for each of these
tasks.

2 Methodology

This section describes the methods utilized for each of the tasks, including data
pre-processing, normalization, feature extraction, model definition, hyperparam-
eters and training. We also briefly present the dataset, and our development
environment.

2.1 The CORSMAL Dataset

The dataset has 1140 instances of multi-modal data recordings of people in-
teracting with 15 different containers [1]. The interactions consisted of people
manipulating the containers, such as pouring water into a cup, or shaking one of
the box containers. The dataset was split into three different sets. The training
set which included 9 containers and accompanied annotations; the public test
set which included 3 containers and no annotations; and the private testing set
which included the remaining three containers and its data was only accessible
to the competition organizers.

The dataset was recorded using RGB and depth cameras (Intel RealSense
D435i), as well as microphone arrays. For every sample in the datasets the avail-
able modalities were the following: 4 distinct RGB, infrared and depth perspec-
tives, audio and IMU data. The four perspectives were first-person from human
point-of-view, first-person from robot point-of-view, and two lateral perspectives.

It is important to note that the dataset was quite challenging, and it’s not
likely that a good solution can come from using just one modality. For example,
there are scenarios where the person manipulates the container outside the field-
of-view of all cameras. Furthermore, among the samples, there are very short
and very large sequences, variations in lighting, scenery changes, noise from
other environments, and changes in placement of objects as well as inclusion of
non-related objects such as a jug, etc..

2.2 Development Environment

We downloaded the almost 400 GB of data and developed our solutions locally.
The relevant specifications and software utilized are presented on Table 1 below.
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CPU Intel i7-8700 3.2GHz – 6 Cores

GPU 1x 1080 Ti

RAM 32 GB

DL Framework PyTorch 1.6.0

Image Processing OpenCV 4.4.0

Audio Processing librosa 0.8.0

Table 1. Computer specifications and relevant software

2.3 Task 2 – Filling Type Classification

Task 2 consisted in classifying the type of filling among four possibilities: nothing
(empty container), rice, pasta or water. We approached this task as a classifica-
tion problem.

For this task we only utilized the audio data. As previously mentioned in
Section 2.1, video data does not provide reliable information for all samples.
In some of the recordings the contents are poured into the containers from out
of view. Furthermore, some of the containers are opaque, so it is not possible
to visually observe its contents at all. On the other hand, audio data provides
valuable information across all samples. It is possible to hear contents being
poured even from outside of view, or the shaking sound in the case of totally
opaque containers such as the food boxes.

Data Pre-Processing

The training set contained a total of 684 audio recordings which were sampled
at 22 kHz. We performed a random validation split of 10%, resulting in 615
recordings for training and 69 recordings for validation.

Our feature extraction consisted of computing the Mel-frequency cepstrum
coefficients (MFCCs) for each audio recording [2]. We used a window size of
20 milliseconds and 40 MFCCs per window. Because the audio recordings had
varying length we defined a maximum length of 30 seconds and zero-padded
shorter recordings to this length. We normalized each MFCC by subtracting the
mean and dividing the standard deviation over the whole sequence. Our resulting
tensor shape was 1501 timesteps by 40 features for each audio recording.

The dataset had an unbalanced number of samples per class: 108 for nothing,
216 for pasta, 216 for rice, and 144 for water. This can become a large problem
specially considering the small amount of samples overall. To prevent the model
from biasing towards classes with more samples, we computed weights inversely
proportional to the number of samples in each class.

Model Definition

We defined a simple convolution-based model where the input is the 1501x40
MFCC sequence. In this regard, we can imagine the sequence as if it was an
“image”. Our model is quite small, with only two convolution layers followed by
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the fully-connected (output) layer with softmax activation. The first convolution
layer has 16 filters, stride of 4 and a kernel of size 120x40. The first dimension
of 120 enables the layer to process a large sequence of the input, and the second
dimension of 40 ensures that all MFCCs contribute at each convolution opera-
tion. This is followed by the second convolution layer with 8 filters, stride of 2
and kernel size of 40x1. We also applied dropout of 25% in the output of the
convolution layers. Figure 1 presents a simplified schematic of the model.

Fig. 1. Schematic of convolution-based model utilized for Task 2. The input are MFCCs
sequences from audio recordings, and output one of the four filling type classes.

The model had approximately 86 thousand parameters. We employed SGD
optimizer [3] with a fixed learning rate of 0.00025 and momentum of 0.9, cross-
entropy loss taking into account the class weights, and used a batch size of 16.
The model was trained for 200 epochs, which takes less than 1 minute of real-time
in our development environment (see Section 2.2).

2.4 Task 3 – Container capacity estimation

Task 3 consisted in estimating the maximum capacity, i.e. total volume, of the
containers in each recording. We approached this task as a regression problem
with a single output: the container volume.

Prior to estimating the actual container volume it is necessary to locate its
position in the data. Because there is no annotations provided for the locations
of the container in the image, and due to the fact that there’s a lot of variation
between the recordings, this step becomes quite challenging. One approach would
be to use segmentation or object detection models to find the container in the
different modalities and fuse the information of synchronous frames. However, in
part due to timing constraints, we opted for a simpler approach, using a single
modality: the depth camera from the robot’s perspective.

Even though there’s a lot of variation between different recordings, there is
one event that is consistent throughout all of them: the human always presents
the container to the robot towards the end of the recording. We designed a
method based on finding the closest contours to the camera that can reliably
find the region of interest (ROI) of the container. We start at the very last frame
of the sequence and iterate backwards until a strong candidate is found. Since
sometimes the human puts the container down before the end of the sequence,
it is not guaranteed that the last frame will provide a reliable ROI. Our method
for finding a strong bounding box is as follows:
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1. Discard the bottom 16% of the image to disregard the table as shown in
Figure 2. This eliminates false positives from the region of the table that is
close to the camera. Since the humans present the container holding it in
the air this is a safe assumption to make;

2. Discard all depth pixels which value is larger than 700. This corresponds to
a distance of 70 centimeters. Shown on Figure 3;

3. Apply morphology operation of closing with a 15x15 kernel to “fill” some of
the spots in the remaining image, shown in Figure 4;

4. Find large contours (pixel area ≥ 15000), as shown in Figure 5. If more than
one contour is found, choose the one whose area is closest to the camera
(smaller pixel values);

5. Compute the ROI bounding box of the contour and expand it by 5%. The
final extracted ROI is presented in Figure 6.

Fig. 2. Left: original depth image. Right: discarded the bottom 16% of the image.

Fig. 3. Before and after filtering. Pixel whose distance is more than 70 centimeters are
discarded.
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Fig. 4. Morphology operation to close gaps in the filtered image.

Fig. 5. Detected contour.
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Fig. 6. The final extracted ROI of the container.

Data Pre-Processing

The dataset is constructed by extracting the ROIs from the sequences in the
training set. Out of the 684 sequences in the training set, our method failed to
find a ROI in 12 of them, which were then discarded from training. The ROIs
were resized to 112x112 and normalized by the maximum pixel value of 700. In
addition, the ROI dimensions are also an input to the model and are normalized
to be between 0 and 1, relative to the original dimensions of the image. The
training targets, i.e. volume of the containers, are normalized dividing by 4000.
With this normalization, the maximum possible volume that the model can
output is 4000 mL. We employed a 15% validation split, which resulted in 572
sequences for training and 100 sequences for validation.

Model Definition

For this task, we also constructed a convolution-based model, a few layers deeper
than the one used in Task 2. Our model has two inputs, a depth image with the
extracted container of size 112x112, and the original dimensions of the extracted
ROI relative to the image. Figure 7 presents a schematic of the model.

The model consists of four convolution layers and three fully-connected lay-
ers. The depth ROI is processed by the convolution layers, and its outputting
features are concatenated with the second input, the ROI dimensions. The con-
catenated features are then passed through another fully-connected layer with a
single output that encodes the estimated container volume. Every convolution
block consists of a 2D convolution layer with ReLU activation, followed by batch
normalization [4] and max pooling with a stride of 2. The model had a total of
532 thousand parameters.
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Fig. 7. Schematic of the model used for Task 3. The inputs are the extracted ROI from
the depth image with the container and its dimensions. The output is the estimated
volume of the container.

The optimizer used was Adam, with a learning rate of 0.00025 with minimum
squared error as the loss function. The model was trained with a batch size of 8
for 200 epochs, which took less than 2 minutes of real-time in our configuration
(see Section 2.2).

3 Results

The official table of results can be accessed at https://shorturl.at/bitJQ.
Overall, our results beat the random baseline. However, we didn’t realize the
task of estimation of the filling level, and only placed 4th overall. We got 38.56
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points in the public testing set, 39.80 points in the private testing set, and 39.18
points overall.

We also placed 4th in Task 2, classification of the filling type, reaching an
accuracy of 81.97% in the public testing set, and 91.67% in the private testing
set. Our overall accuracy was 86.89%.

Most notably, even though we were using a quite simple method, we placed
first in Task 3, estimation of the container volumes. We got 66.92 points in the
public testing set, 67.67 points in the private testing set and 67.30 points overall.

4 Conclusion

In this report, we presented the solutions of team NTNU-ERC for the 2020
CORSMAL Challenge. The challenge consisted of three different tasks involving
multi-modal data of different types of containers. The dataset had quite a bit
of variance among its sequences, and several different scenarios. Due to timing
constraints, we only performed two of the three tasks. In the task of classifying
the type of container we employed a small convolution-based network to process
MFCCs features extracted from audio data. And, in the task of estimating the
volume of the containers, we used image processing to reliably find the container
region in a depth sequence, and used a larger convolution network to perform
the estimates.

Most notably, we got first place in the volume estimation task, even though
our method was quite simple. Our methods were quite lightweight, and our
models can be trained on a single GPU in under 5 minutes. That being said,
our solutions could be improved by using more complex models such as shape
estimation models. Additionally, using segmentation and object detection models
to locate the containers would provide more robust solutions, that could make
use of more modalities.
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