VA2Mass: Towards the Fluid Filling Mass Estimation via **Integration of Vision Audio Learning**

Solution for CORSMAL Challenge of Multi-modal Fusion and Learning For Robotics in ICPR2020

By Concatenation (Qi Liu, Fan Feng, Chuanlin Lan & Rosa H.M. Chan) With affiliation City University of Hong Kong **On 14 Jan. 2021**

Inspiration

- Containers have various nature frequencies due to their physical properties.
 - Physical properties: material, stiffness, texture.
- Given the specific container, the vibrational frequency varies if poured with different filling contents.
 - Filling contents: empty, water, pasta and rice.

Method

- **Based on container prior.** lacksquare
 - Modality used: RGB from all views;
 - YOLOv4¹ pre-trained on MS COCO².
- Filling level and filling type classification.
 - Modality used: Audio;
 - Multi-Layer Perceptron (MLP) with 2 hidden layers.
- Container capacity estimation.
 - Modality used: RGB from all views;
 - Gaussian process regression to fit category-based capacity distribution.

1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

2. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dolla'r, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference on computer vision. pp. 740–755. Springer (2014)

Method (Con't) Filling level and filling type classification

- 1. Audio feature extraction.
 - Re-sample at 16,600Hz;
 - Select the last 32,000 data points;
 - Discrete fourier transform (DFT).
- 2. Classification model.
 - Two hidden-layer (3,096-512) MLP;
 - Learning rate: 0.05;
 - #Epochs: 200.

Method (Con't) **Container capacity estimation**

- 1. Infer the category label x_i from the object detection model;
- 2. Construct the training set;

•
$$\mathscr{D} = (\mathbf{X}, \mathbf{y}) = \{ (\mathbf{x}_i, y_i) \mid i = 1, ..., N \}.$$

- 3. Conduct the Gaussian process regression.
 - For a new input X^* in test-set, we have $\hat{\mathbf{y}}^*$ y^* - The predicted value.

K - the covariance function defined by K(A)

$$\mathbf{K} = K(X^*, X) K(X, X)^{-1} \mathbf{y}.$$

$$(A, B)_{ij} = \exp\left(-\frac{1}{2}\left|A_i - B_j\right|^2\right)$$

Experimental result 2nd runner-up

Task	Performance		
	Public test	Private test	Overall
Task 1 - Filling level	44.31	42.70	43.53
Task 2 - Filling type	41.77	41.90	41.83
Task 3 - Container capacity	63.00	62.14	62.57
Overall Task - Filling mass	52.80	54.14	53.47

• Weak in Task 1 and Task 2.

- # signal points we select would be the background noise in the recordings of complex scenarios;
- Future work: extract the spectrogram based on the regular time windows.

Conclusion

Method summary

- Container detection is served as the prior;
- Audio features is fed into MLPs for filling level and filling type classification;
- Gaussian process regression for container capacity estimation. •

The proposed method

- can be tuned for better performance or computation efficiency.
 - e.g., be equipped with different backbone models.

• is useful for smart robots helping with daily activities like objects pick-up, place and handovers.

Thank you for listening !

Report

