

CORSMAL

Collaborative Object Recognition, Shared Manipulation And Learning

ORMR - Object Recognition and Manipulation by Robots: data sharing and experiment reproducibility (2019-2022)

CHIST-ERA Projects Seminar 2021

Aims

To create an open dataset and an evaluation protocol for the recognition and manipulation of previously unseen object instances

To explore multiple sensing modalities (touch + sound + vision) to accurately and robustly estimate the physical properties of objects

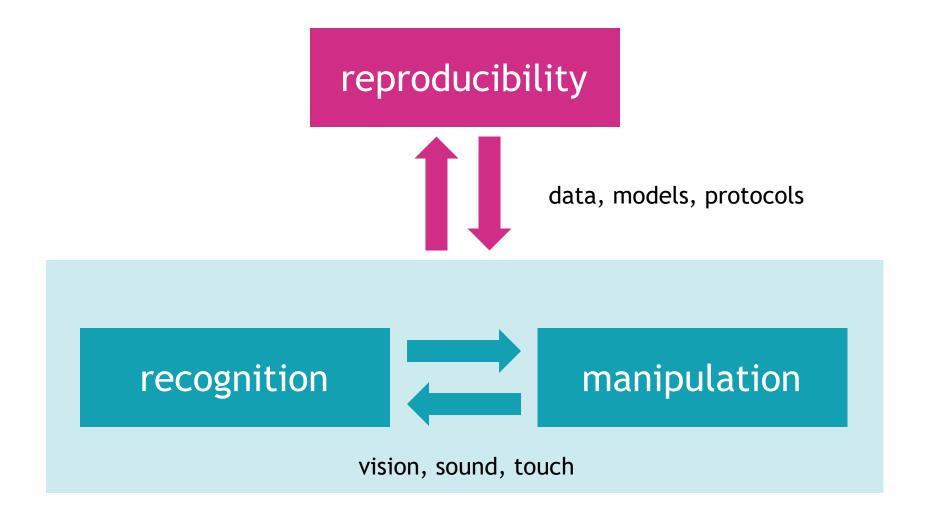
The task

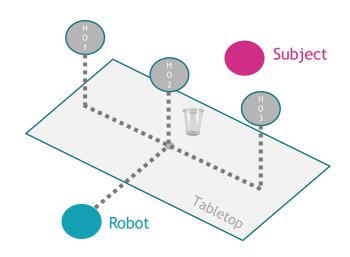
Human grasping

Human manipulation

Human-robot handover

Robot manipulation


Robot delivery



Benchmark and baseline algorithms for human-to-robot handovers distributed to (and used by) the community

CORSMAL *Protocol and Code*

github.com/CORSMAL/Benchmark ieeexplore.ieee.org/document/8968407 IEEE RA-L Open Access

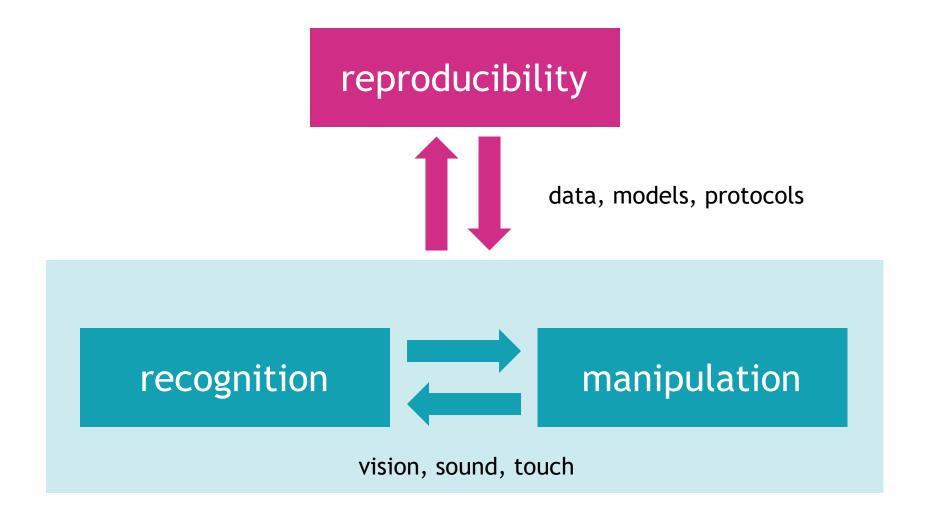
reproducibility

Datasets

CORSMAL Containers doi.org/10.17636/101CORSMAL1

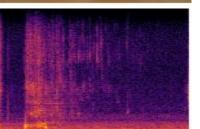
CORSMAL *Containers Manipulation* doi.org/10.17636/corsmal2

Models

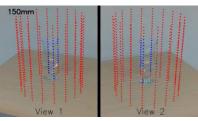

CORSMAL Pre-trained Models

zenodo.org/record/ 4518951#.YC9-z-qnw5k Platform for participants to submit the results of the CORSMAL Challenge and progressive update of the Leaderboard

Team -	Description	Task 1	Task 2	Task 3	Public -	Private -	Overall *
Because It's Tacti	GRU+ Random Forest for filling properties estimation. LoDE with RGB-D-IR data from selected frames in a video for volume estimation.	~	~	~	64.98	65.15	65.06
HVRL	Log-Mel spectrogram-based audio features as input to VGG-based CNN and LSTM for filling properties estimation. Container volume from the shape approximation as cuboid of the 3D point cloud obtained with RGB-D data and object detection with Mask R-CNN.	~	~	×.	63.32	61.01	62.16
Concatenation	Multi-modal learning with audio features and prior of container categories through object detection for inferring container capacity and fluid properties.	~	~	~	52.80	54.14	53.47
NTNU-ERC	MFCC features in a 20s-window + neural network to classify filling type. Object detection and selection of the closest contours (up to 700 mm) in the depth data + regression with a CNN for container capacity.		~	~	38.56	39.80	39.18
Random	Baseline with random estimations for each task.	~	~	~	38.47	31.65	35.06
Challengers	Sound-based classification of filling type and level with STFT and 5-layers fully connected neural network.	~	~		29.25	23.21	26.23
SCC-Net	Sound-based hierarchical ensemble of DNNs to jointly classify filling type and level.	~	~		28.02	22.92	25.47
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		19.46	9.59	14.53
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		15.15	9.96	12.56
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		17.28	6.99	12.14
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		12.95	10.25	11.60


CORSMAL Challenge and Evaluation Toolkit

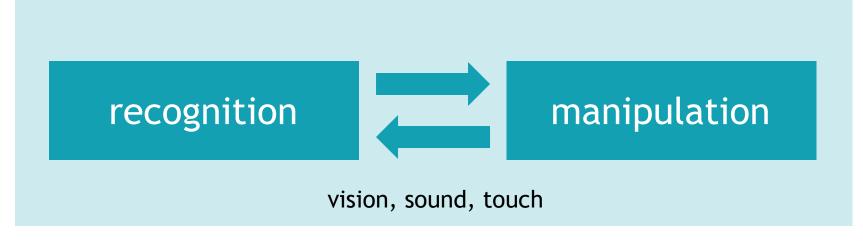
corsmal.eecs.qmul.ac.uk/challenge.html github.com/CORSMAL/CORSMALChallengeEvalToolkit



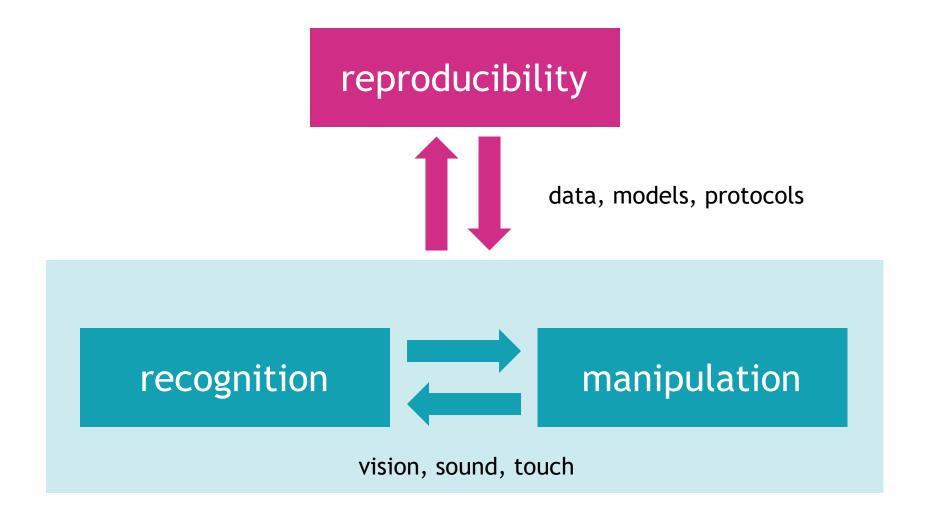
Sound-based Classification of the Content Level and Type in a Container

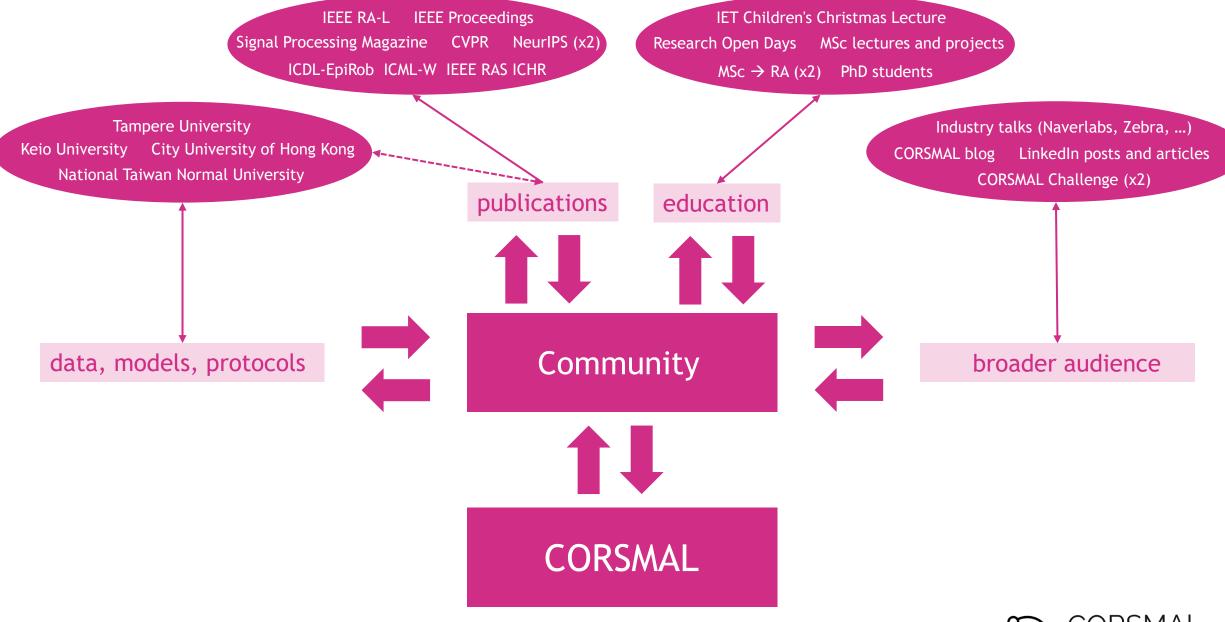
Improving Filling Level Classification with Adversarial Training

Redundant Features Can Hurt Robustness to Distribution Shift


Multi-view Shape Estimation of Transparent Containers

On Force Synergies in Human Grasping Behaviour


From Human Action Understanding to Robot Action Execution: How the Physical Properties of Handled Objects Modulate Non-verbal Cues



Full list of publications at: corsmal.eecs.qmul.ac.uk/publications.html

Includes publications by external teams that used CORSMAL datasets, protocols & models and, in turn, shared their annotations & models!

Gripper → Hand

share

improve

reproduce

Adversarial training domain

adversarial example

<full>

Shared Models → Transfer Learning

compare

Team -	Description	Task 1	Task 2	Task 3	Public -	Private -	Overall *
Because It's Tacti	GRU+ Random Forest for filling properties estimation. LoDE with RGB-D-IR data from selected frames in a video for volume estimation.	~	~	~	64.98	65.15	65.06
HVRL	Log-Mel spectrogram-based audio features as input to VGG-based CNN and LSTM for filling properties estimation. Container volume from the shape approximation as cuboid of the 3D point cloud obtained with RGB-D data and object detection with Mask R-CNN.	~	~	*	63.32	61.01	62.16
Concatenation	Multi-modal learning with audio features and prior of container categories through object detection for inferring container capacity and fluid properties.	~	~	~	52.80	54.14	53.47
NTNU-ERC	MFCC features in a 20s-window + neural network to classify filling type. Object detection and selection of the closest contours (up to 700 mm) in the depth data + regression with a CNN for container capacity.		~	~	38.56	39.80	39.18
Random	Baseline with random estimations for each task.	~	~	~	38.47	31.65	35.06
Challengers	Sound-based classification of filling type and level with STFT and 5-layers fully connected neural network.	~	~		29.25	23.21	26.23
SCC-Net	Sound-based hierarchical ensemble of DNNs to jointly classify filling type and level.	~	~		28.02	22.92	25.47
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		19.46	9.59	14.53
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		15.15	9.96	12.56
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		17.28	6.99	12.14
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		12.95	10.25	11.60

Compare → Leaderboad

domain

Summary

- Benchmark for Human-to-Robot Handovers
- Evaluation protocol
- Evaluation toolkit
- Baseline code + pre-trained models
- Datasets
 - CORSMAL Containers dataset
 - CORSMAL Containers Manipulation dataset
- Events at
 - IEEE Int. Conf. on Multimedia and Expo
 - Int. Conf. on Pattern Recognition
 - Intelligent Sensing Summer School
- Join our community: participate in the CORSMAL Challenge!

Partners

Sponsors

Contact: a.cavallaro@qmul.ac.uk

Human holds the container

Human pours a filling in the container

Human gives the container

Human holds the container

Human shakes the container

Human gives the container