

CORSMAL

Collaborative Object Recognition, Shared Manipulation And Learning

corsmal.eecs.qmul.ac.uk

CORSMAL in a nutshell

Focus: human-to-robot handovers

Reproducibility: protocol, data, models, challenge

Benchmark and baseline algorithms for human-to-robot handovers distributed to (and used by) the community

Multi-modal datasets: containers manipulated by a human or by a robot

Machine learning models
distributed to
(and complemented by)
the community

Platform for participants to submit the results of the CORSMAL Challenge and continuously updated leaderboard

Team -	Description	Task 1	Task 2	Task 3	Public -	Private -	Overall *
Because It's Tacti	GRU+ Random Forest for filling properties estimation. LoDE with RGB-D-IR data from selected frames in a video for volume estimation.	~	~	~	64.98	65.15	65.06
HVRL	Log-Mel spectrogram-based audio features as input to VGG-based CNN and LSTM for filling properties estimation. Container volume from the shape approximation as cuboid of the 3D point cloud obtained with RGB-D data and object detection with Mask R-CNN.	~	~	*	63.32	61.01	62.16
Concatenation	Multi-modal learning with audio features and prior of container categories through object detection for inferring container capacity and fluid properties.	~	~	~	52.80	54.14	53.47
NTNU-ERC	MFCC features in a 20s-window + neural network to classify filling type. Object detection and selection of the closest contours (up to 700 mm) in the depth data + regression with a CNN for container capacity.		~	~	38.56	39.80	39.18
Random	Baseline with random estimations for each task.	~	~	~	38.47	31.65	35.06
Challengers	Sound-based classification of filling type and level with STFT and 5-layers fully connected neural network.	~	~		29.25	23.21	26.23
SCC-Net	Sound-based hierarchical ensemble of DNNs to jointly classify filling type and level.	~	~		28.02	22.92	25.47
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		19.46	9.59	14.53
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		15.15	9.96	12.56
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		17.28	6.99	12.14
Mask R-CNN + R	Vision baseline for filling properties estimation.	~	~		12.95	10.25	11.60

CORSMAL Protocol and Code

github.com/CORSMAL/Benchmark ieeexplore.ieee.org/document/8968407 IEEE RA-L Open Access

CORSMAL Datasets

doi.org/10.17636/101CORSMAL1 doi.org/10.17636/corsmal2 doi.org/10.5281/zenodo.6372438 doi.org/10.5281/zenodo.4642577

CORSMAL Pre-trained Models

doi.org/10.5281/zenodo.4518950 doi.org/10.5281/zenodo.5525332 doi.org/10.5281/zenodo.4770061 doi.org/10.5281/zenodo.4518951

CORSMAL Challenge and Evaluation Toolkit

corsmal.eecs.qmul.ac.uk/challenge.html github.com/CORSMAL/CORSMALChallengeEvalToolkit

Challenge: Main events, organisers, sponsors & participants

Project partners

Joined the Challenge organisers team

Challenge events at major international conferences

Challenge prizes: Sponsors

The **Alan Turing** Institute

Università di Genova

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Participants

Challenge tasks: Physical properties estimation

Models shared by challenge participants for the five tasks

Transfer learning for model fine tuning

Data augmentation for model training

Filling level estimation

- High variability: container shape, transparencies, illumination and background variations, occlusions
- Augmentations tailored to the task
 - Diffeomorphisms
 - Random colour jittering
 - FIR filter with random coefficients
- Mixing strategy to increase diversity of transformations

Audio-tactile sensory fusion

Real-time prediction of the contents of container & inertial properties during robot manipulation

Ground Truth

Prediction

Predict torque in anticipation for adaptive hand control to maintain stable grip on the container during manipulation

CORSMAL

Collaborative Object Recognition, Shared Manipulation And Learning

corsmal.eecs.qmul.ac.uk

